
Quantum Computation aims at providing
us with great advances in the solution of
some problems for which we know no
efficient algorithms using the classical
computer models and systems are
available [1].

In this project we have created a
simulation environment for
testing quantum algorithms. Our
implementation is based on a
high level interface in
Mathematica called Quantum,
connected to C++ code capable
of communicating with a GPU.
Our project allows quantum
scientists to enhance the
performance of quantum
computing simulations using a
single PC equipped with an
NVIDIA CUDA-compatible GPU.

The adiabatic quantum algorithm we
have simulated [4] consists of the
design of a time-dependent
Hamiltonian which can be separated
into three parts: an initial Hamiltonian
which encodes the ground state of the
system, a driving Hamiltonian, in
charge of taking the system from the
initial state to the final state and the
final Hamiltonian, created from an
energy function which will give every
possible state an energy level
proportional to the number of
unsatisfied clauses.

An energy function for this algorithm
depends on the instance and is
constituted by a sum of smaller energy
functions, one for each clause. The
ground state of the final Hamiltonian
encodes the solution to the problem.

Our tests were run using a PC with Intel Core 2 Duo processor @ 2.66GHz, 8GB of RAM memory running with
Windows Vista and an NVIDIA Geforce GTX 8800 video card of 512MB of video memory and 128 parallel cores.
The simulation environment currently runs on Mathematica 7.
 Based on our results, we observe that the number of qubits simulated using our GPU tools easily double the
ones simulated on a CPU using our setup. These results are possible due to the combination of two
characteristics in our simulation: firstly, we aid the simulation tasks with the power of multi-core GPU processing
with kernels designed to take advantage of the special memory, thread management and synchronization
capabilities of NVIDIA cards. Secondly, we simulate quantum parallelism directly with classical multicore
parallelism, which allows us to exploit the GPU occupancy factor to the maximum on every run.
.

Adiabatic Quantum Computing simulations using GPGPU

Sandra Díaz Pier
A00455576@itesm.mx

Salvador Venegas-Andraca
svenegas@itesm.mx

José Luis Gómez-Muñoz
jose.luis.gomez@itesm.mx

Quantum Information Processing Group
Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Estado de México

Figure 4: CPU and GPU execution times for different
instances of the 3SAT problem.

Figure 3: CPU and GPU simulation times for different
number of qubits.

Figure 2: Information Flow among Quantum, Mathematica,
Mathlink, C/C++, CUDA and GPUs.

Instance

Solution
Space

Correct
Solution

Quantum
Processing
Units

Output Instance

Solution
Space

Correct
Solution

GPU
Processing
Units

Output
Instance

Solution
Space

Correct
Solution

Classic
Processing
Unit

Output

Figure 1: Quantum, multi-core and serial computational approaches

Figure 5: CPU and GPU execution times for different instances
of the 3SAT problem.

We have tested our platform
simulating hard instances of the
3SAT problem [2]. The problem is
NP-complete, and becomes
particularly difficult to solve when
the ratio of number of clauses to
number of variables is about 4.2
[3].

References:
[1] M. Nielsen and L.-I.Chuang. Quantum Computation and Quantum Information. Cambridge University Press, UK, 2000.
[2] A. Perdomo, S. Venegas-Andraca and A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation. Quantum Information
 Processing. 10(1):33-52, February 2011.
[3] D. Achlioptas, A. Naor and Y. Peres. Rigorous location at phase transition in hard optimization problems. Nature, 435:759-764, 2005.
[4] E. Farhi, Et Al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 292(5516):472-475,
 2001
.

