

Ubiquitous Tracking in the Medical Environment G. Fenyvesi, T. Haidegger, B. Benyó, L. Kovács and Z. Benyó

Laboratory of Biomedical Engineering, Dept. of Control Engineering and Information Technology, Budapest University of Technology and Economics (BME – IIT), Hungary

INTRODUCTION

Computer-Integrated Surgery (CIS) and **intra-operative navigation** opened a new era in interventional medicine.

- possibility to track tools
- visualize patient's preoperative records in real-time
- access the desired anatomical region
- overlay patient information and critical data
- surgical simulation and training of medical students

DEVELOPMENT WITHIN A FEW DECADES

- realistic simulation programs
 - modeling the field and the distortion caused by individual instruments
- all active and passive devices in the OR will be modeled and tracked leading to the concept of **ubiquitous tracking**
- CT breeds and MR fiducials will be incorporated providing a gold standard for CAD model calibration

Accurate soft tissue/soft environment models

 continuous patient motion compensation (physiological & external) immediately determine how the magnetic field was affected by other devices or surgical tools

ELECTROMAGNETIC TRACKING (EMT)

Main advantages:

- no need of *line-of-sight* between marker and the receiver
- possible to assist complex interventions (bronchoscopy, radiosurgery, heart ablation and beyond) • works even with certain metals (e.g., titanium)

Main disadvantages:

- highly susceptibility to other electronic devices and metals
- especially ferromagnetic items
- surgical tool and instruments: laparoscopic forceps, cutlery, trays, etc.
- lower accuracy compared to optical modality
- working volume significantly limited
- no generic solution for metallic sensitivity
 - Hearth cathetering Electromagnetic

- EM compensation in real time
- highly trusted position measurements
- o all environmental variables fully tracked and recorded for monitoring

Credit: medGadget

Credit: NIH, Clinical Center

FET: FULLY SENSORIZED OPERATING ROOM

Ubiquitous tracking & wireless power transmission technologies [4]

sensors will transmit and receive power

POSSIBLE ADVANCEMENT IN THE NEAR FUTURE

Primary technical difficulties to be solved:

- dynamic EM distortion calibration (with quick protocols)
- static error correction and susceptibility reduction
- distortion modeling and simulation
- enabling device specific tracking in the medical environment
- support of multi-sensor applications (swarms)
- significant extension of the work space
- innovative types of sensors

Lindisch, and K. Cleary [3]

 effective compensation of the EM field • freeing the operating room from cables

Credit: RRC power solutions

- tracking technology will be embedded throughout the operating room
- tracking sensors and RF IDs will complement each other
- motion of the tools, devices and the patient will be tracked
- enormous improvement in surgical simulation and workflow analysis dramatic improvement of assistive surgical technologies
- error assessment and rapid calibration for the entire workspace in any environment (including MR rooms)
- emergence of fully controlled operating room, unprecedented accuracy through tracking
- compensating the EM fields distortions in real-time, tracking to improve minimally invasive procedures

CONCLUSION

In the future, we expect the rise of the concept of "ubiquitous tracking", where all major parts of the medical working environment is tracked and modeled real-time in a virtual environment according to their physical state and position. This will lead to a complete understanding of the procedures.

ACKNOWLEDGMENT

The research was supported by the National Innovation Office OTKA CK80316 and TÁMOP-4.2.1/B-09/1/KMR-2010-0002 grants.

Credit: NIH, Clinical Center

Courtesy of Richard M. Satava

REFERENCES

- [1] H. Furtado, "Augmented Reality and wireless sensor networks applications to support minimally invasive cardiac surgery"; Doctoral Dissertation; 2010
- [2] J. Much, "Error Classification and Propagation for Electromagnetic Tracking", MSc thesis in Computer Science, Technische Universitat Munchen; 2008
- [3] Z. Yaniv, E. Wilson D. Lindisch, and K. Cleary, "Electromagnetic tracking in the clinical environment", Medical *Physics*; Vol.36:3, p.876–892; 2009
- [4] J. Payne, K. Song, S. Yang, J. Kim, Y. Park, S. Choi, "Wireless power transmission for medical applications", *Proceedings of the SPIE*, Vol.7291, 2009

Contact:

Haidegger, Tamás Email: haidegger@iit.bme.hu

Fax: +361/4632204 Address: Magyar tudósok krt. 2. Budapest, Hungary, 1117