
 TO PRESENT A UNIFIED DYNAMIC MODELING APPROACH FOR BIO-INSPIRED BY ELONGATED ANIMALS

 TO DEVELOP AN ALGORITHM CAPABLE OF COMPUTING THE AND INTERNAL OF THE HYPER-REDUNDANT CONTINUUM SYSTEMS

 APPLICATION TO ELONGATED ANIMALS: VERTEBRATES SUCH AS SNAKES, AND INVERTEBRATES SUCH AS EARTHWORMS AND INCHWORMS

BEAM THEORY vs. CONTINUUM SYSTEMS LIE GROUP THEORY vs. LOCOMOTION
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ALGORITHM

The proposed algorithm combines all these approaches and models to
give a unified framework for efficient computation of:

The net motion of the reference body of continuum system
The torques required to impose the desired strain law 
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Anchorage

Annular contacts are modeled as Non-holonomic Constraints

Sweeping AnchorageLocked Anchorage

EARTHWORMINCHWORM

Torque distribution over the length

SNAKE

Torque distribution over the length
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Model of Internal Dynamics

Model of External Dynamics

MODELS OF SYSTEM

ˆ( )g g t 

( ) ( )
d dad t     

( ) ( ) ( )
d d

dad ad t 
       

( 0) og X g 

( 0) oX  

( 0) oX  

BEAM KINEMATICS

To model a Hyper-redundant Continuum System as a 3D Cosserat Beam 
with imposed strain fields between sections

To model the inter-vertebral kinematics (or joint kinematics in case of 
robots) as actuated strain fields between sections of the beam

The nature of contact between system and surrounding plays an 
important role in defining the mode of locomotion 

The contacts are assumed ideal

Climbing motion of an 
Inchworm Force distribution over the lengthContact forces

Locomotion of an Earthworm in xy plane

Group

Type of beam 2D actuated Kirchhoff beam

Type of contact Annular

Connection

Shape law

Compatibility

Turning locomotion in xy plane
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Group

Type of beam 1D actuated extensible Kirchhoff beam

Type of contact Sweeping Anchorage

Connection
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Group

Type of beam 2D actuated Kirchhoff beam

Type of contact Locked Anchorage

Shape law
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(3)G SELie group of Transformations:

(3)seLie Algebra of G:

(3)g SEHomogenous Transformation element in G:

Vector fields in se(3)

Time-twist field:   1ˆ ˆ: 0, ( , ) (3)X l X t g g se    

Space-twist field:   1ˆ ˆ: 0, ( , ) (3)X l X t g g se     
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Strain fields:

Initial configuration

Deformed configuration
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Transverse shearStretching

Anchorages are modeled as Bilateral Holonomic Constraints

Model of transformations:

Boundary Condition:

Model of Velocities:

Boundary Condition:

Model of Accelerations:

Boundary Condition:

Annular Contact
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c variable:

c constant:

Internal dynamics are defined on 

External dynamics are defined on 

Boundary Conditions:
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Configuration Spaces in Locomotion

Configuration Space: as a principal fiber bundle

Configuration Space: as a functional space of curves in 

Configuration Space: as a functional space of curves in

(3)SE

(3)se

(3)se

The contact forces are identified as Lagrange Multipliers 
associated to the constraints

The locked anchorage is periodically 
changed between head and tail
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