

Terrestrial Locomotion Modeling Bio-inspired by Elongated Animals

Shaukat ALI (PhD Student) Ecole des Mines, Nantes, France (shaukat.ali@mines-nantes.fr)

Frédéric BOYER (Pr.) Ecole des Mines, Nantes, France (frederic.boyer@mines-nantes.fr)

Mathieu POREZ (Dr.) Ecole des Mines, Nantes, France (mathieu.porez@mines-nantes.fr)

TO PRESENT A UNIFIED DYNAMIC MODELING APPROACH FOR *HYPER-REDUNDANT CONTINUUM SYSTEMS* BIO-INSPIRED BY ELONGATED ANIMALS

- > TO DEVELOP AN ALGORITHM CAPABLE OF COMPUTING THE **NET MOTION** AND INTERNAL **CONTROL TORQUES** OF THE HYPER-REDUNDANT CONTINUUM SYSTEMS
- > APPLICATION TO ELONGATED ANIMALS: VERTEBRATES SUCH AS SNAKES, AND INVERTEBRATES SUCH AS EARTHWORMS AND INCHWORMS

GENERAL APPROACH

BEAM THEORY vs. CONTINUUM SYSTEMS

To model a Hyper-redundant Continuum System as a 3D Cosserat Beam with imposed strain fields between sections

BEAM KINEMATICS

To model the inter-vertebral kinematics (or joint kinematics in case of robots) as actuated strain fields between sections of the beam

LIE GROUP THEORY vs. LOCOMOTION

Lie group of Transformations: $G \subseteq SE(3)$

		Type of contact	Annular
		Connection	$\eta_o = \begin{pmatrix} 1/K'_o \\ K_o/K'_o \end{pmatrix} \dot{K}_o$
		Shape law	$K_{dZ}(X,t) = f\left(X + \int_{o}^{t} V_{o}(\tau)d\tau\right)$
		Compatibility	$\dot{K}_{dZ} = V_o K'_{dZ}$
		Turning locomotion in x	v plane Torque distribution over the length