Model-based analysis of functional connectivity during associative learning in schizophrenia

Mihály Bányai, Vaibhav Diwadkar and Péter Érdi

School of Medicine

Detroit, MI, USA

Wayne State University

KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences Budapest, Hungary

The experiment

Task

- 11 subjects with schizophrenia and 11 healthy controls

Kalamazoo College

Kalamazoo, MI, USA

- visual associative learning task: objects in the cells of a 3-by-3 grid

Center for Complex Systems Studies,

- Encoding phase: the objects were shown in their places one by one
- Retrieval phase: only cues were given, patients had to tell what was the object in the cell
- phases were separated by resting periods.
- 8 learning epochs in a row

Behavioural differences

- Schizophrenia patients were able to learn the task
- their learning curve converges slower compared to healthy controls

Data preparation

- fMRI data were preprocessed and analysed using a standard processing sequence - Time series were extracted using a thresholded effects of interest contrast

- stereotactic region-of-interest maps

Dynamic Causal Modelling

Neural activity dynamics considering the effects of experimental conditions

 $\dot{x} = (A + \sum_{i=1}^{N} u_{j} B^{j}) x + Cu$ $y = \lambda(x, \theta_h)$

Mapping from neural activity to BOLD signal (nonlinear) Bayesian parameter estimation:

$$p(\theta|y, M) = \frac{p(y|\theta, M) p(\theta|M)}{p(y|M)} \qquad \theta = \{A, B, C, \theta_h\}$$

Assumption: all distributions are Gaussian Approximation method: Expectation Maximization

Model comparison:

Goodness measure: model evidence

$$p(y|M) = \int p(y|\theta, M) p(\theta|M) d\theta$$

Approximation method: variational Bayesian

Models to compare

Input conditions: presence of a visual stimulus (Visual), encoding phase (Encoding), retrieval phase (Retrieval) and the epoch number (Time)

Two streams of connections:

data stream: lower level -> higher level, black on above figure, fixed in the models control stream: higher level -> lower level, black on above figure, varied in the models

First model set: different intrinsic connectivity combinations (A matrix in DCM) Second model set: different modulatory effects of input conditions (B matrix in DCM)

Results

Parameter level analysis

- comparing effective connectivity parameters
- reference model was selected (above)

The significance values come from two-sided t-tests on the samples of the two groups.

Significant differences:

- prefronto-hippocampal pathway
 hippocampo-inferior temporal pathway
 the context-dependent modulation of those by the learning procedure

Correlation with behaviour <u>Illnes or slow learning?</u>

Conclusions

How are the DCM model parameters correlated with learning performance of the subjects?

Common probelm in learning experiments: are the differences there due to the disorder, or some subjects are naturally slow learners?

- subjects in control group with no better performance than patients (3 people).

- model comparison for these subjects separately

- An associative learning task was performed by schizophrenia patients and healthy controls, patients performed worse.

- Several connectivity models of the BOLD signal generation were defined by DCM and fitted to measurement.
- The information processing neworks implemented by patients proved to be fundamentally different than the controls'.
- Impairment in the prefronto-hippocampal and hippocampo-inferiontemporal pathways, which play an important role in the cognitive control of associative memory formation.
- -The connection strengths are positively correlated with learning performance.
- The method is able to differentiate natural slow learning and illness.