Trust Modelling in Socio-Technical Systems

TRUST MODEL for Socio-Technical Systems

Domains

Social Psychology

- Subjectivity, Cost/benefit analysis

• Sociology

- Social Relations, Culture

Philosophy

- Why trust?

Neurological / Cognitive
- Biological and brain processes

Web Community: "The Pioneers"

• Example Applications

- Recommendation systems (eBay, Amazon)

- *m*-Commerce (Banking etc.)

Trust Model: Behavioural Factors

INTENTIONS	EMOTIONS	INDIVIDUALISM
Trust (neighbours) /	Fear / Hope /	Expressiveness /
Belief (options)	Attractive power	Openness / Contagion

TRUST: Attitude of an agent towards an information source(s) that determines the extent the source(s) influences the

Factors

- System quality (navigational structure, visual appeal)

- Cultural Differences

Trust in Tech.: Hazardous Situations

• Difficulties

- Highly volatile system dynamics
- (ultra-) Large-scale systems
- Complex (unpredictable) social / personal behaviour
- Collection of empirical evidence not possible

Emotional Decision Making Model Evacuation based on neurological theory of Hesslow

agent's belief(s), horizantal to emotional and individual considerations.

The emotional decision making model for to move to exit E

Simulation for Evacuation Scenario

HYPOTHESIS: A more trustworthy (AmI assisted, device-enabled) agent influence the beliefs (consequent actions) of an agent more...

Scenario: Linz main railway station

LifeBelt: AmI assistance during evacuation (tactile feedback)

Modelling framework for socio technical system

SIMULATION: Results on trust model for evacuation

Nearest Exit: Without LifeBelt, with Trust Model

Recommended Exit: with LifeBelt, with Trust Mode

Evacuation: 66% (dpr=1%), 81% (2%), 88% (4%), 96% (100%)

Geometry of one floor and corresponding NetLogo model Improved evacuation efficiency, more balanced exit usage

Remarkable "follower" for Aml assisted agents

A. Ferscha, K. Zia, A. Riener, Johannes Kepler University, Institute for Pervasive Computing, Linz/Austria, <*lastname@pervasive.jku.at*>

Alexei Sharpanskykh, VU University Amsterdam, Amsterdam, the Netherlands, *<sharp@cs.vu.nl>*

Acknowledgements: This work is supported under the FP7 ICT Future Enabling Technology program of the European Commission under grant agreement No. 231288 (SOCIONICAL). The "LifeBelt" system was developed under grant FACT, Siemens AG, CT-SE 2, Munich. The Austrian Federal Railway (ÖBB) supported the experiments in Linz Main Station. R. Neunteufel (ÖBB), Ch. Neumann (ILF), and W. Ammerstorfer (ÖBB) provided valuable train-station specific information.

