

Foundations of Adaptive Networked Societies of Tiny Artefacts

Funded by the European Commission under the FET Proactive Initiative Pervasive Adaptation.

Building simple formations in large societies of tiny mobile robots

Vision: Mathematical foundations of swarm robotics

Tiny robot

- Small
- Limited sensing
- Limited computational power
- Limited communication capabilities
- Limited energy

Large society of tiny robots

- Accomplish difficult tasks
- Adapt to changing environment
- Are robust against failures
 - Adapt to different tasks

- No central control
- Distributed execution
- Each robot has only limited local information

How do we achieve good global behaviour? ightarrow Which formations can the robots build?

Challenge:

Design and **rigorous mathematical analysis** of local strategies for robotic swarm formation

- Correctness
- Time efficiency
 - Energy efficiency

Example: Line between two stations

Start

- Robots already
 organized in a chain
 → each robots knows
 two neighbours
- Chain is arbitrarily long

Goal

- Each robots is between ist two neighbours
- The robots form a straight line between
 - the two stations

<u>A Strategy</u>: δ -Go-To-The-Middle

Model assumptions

- Discrete time
- synchronous execution of the strategy

-

- *n* robots

Results

- Energy spent for sensing environment: proportional to $n^2 \log n + \frac{n}{\delta}$
- Energy spent for moving: proportional to $\delta n^2 + n$ \rightarrow Choose $\delta = \frac{1}{n}$:
 - Energy for sensing proportional to $n^2 \log n$

and winding

- → Spend as little energy as possible!
 - Sense environment
 - movement

- Energy for moving proportional to *n*

Conclusion: Exploring the step size can be helpful for energy reduction

Bastian Degener, Barbara Kempkes, Friedhelm Meyer auf der Heide

Heinz Nixdorf Institute & Department of Computer Science, University of Paderborn

HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity

100	
- Aler	SEVENTH FRAMEWORK PROGRAMME

16.0	
1	

Reconstruct Adaptemic Computer Technology Institute (RACTI) Linnersity of Athens (UOA)

- Braunaumweig Umversity inf Technology (TUBID) - Universität Paserbern (UPB) - Universität Paserbern (UPB)

Linnersita di Roma "La Basensa" (UDINLS) Universita degli Studi di Salerno (UNISA)

Ban-Gastice University of the Neger (DGV)

Wroclaw University of Tecturelegy (WROC)

Universitet Politecres.

de Catziamya (UPC).

University of Geneva (UNIGE)